Longitudinal force distribution using quadratically constrained linear programming
نویسندگان
چکیده
منابع مشابه
Linear Programming Relaxations of Quadratically Constrained Quadratic Programs
We investigate the use of linear programming tools for solving semidefinite programming relaxations of quadratically constrained quadratic problems. Classes of valid linear inequalities are presented, including sparse PSD cuts, and principal minors PSD cuts. Computational results based on instances from the literature are presented.
متن کاملFinding Optimal POMDP Controllers Using Quadratically Constrained Linear Programs
Developing scalable algorithms for solving partially observable Markov decision processes (POMDPs) is an important challenge. One promising approach is based on representing POMDP policies as finite-state controllers. This method has been used successfully to address the intractable memory requirements of POMDP algorithms. We illustrate some fundamental theoretical limitations of existing techn...
متن کاملQuadratically Perturbed Chance Constrained Programming with Fitted Distribution: t-Distribution vs. Gaussian
For chance-constrained programming (CCP) with non-Gaussian uncertainty, the optimization is generally intractable owing to the complicated probability density function (PDF). Using a simple fitted distribution with Kullback-Leibler (KL) divergence to represent the PDF mismatch is a systematic way to tackle CCP with non-Gaussian uncertainty. However, the essential difficulty of this methodology ...
متن کاملConstraint Programming for Strictly Convex Integer Quadratically-Constrained Problems
Inspired by the geometric reasoning exploited in discrete ellipsoid-based search (DEBS) from the communications literature, we develop a constraint programming (CP) approach to solve problems with strictly convex quadratic constraints. Such constraints appear in numerous applications such as modelling the ground-to-satellite distance in global positioning systems and evaluating the efficiency o...
متن کاملSensitivity Analysis for Multiple Comparisons in Matched Observational Studies through Quadratically Constrained Linear Programming
A sensitivity analysis in an observational study assesses the robustness of significant findings to unmeasured confounding. While sensitivity analyses in matched observational studies have been well addressed when there is a single outcome variable, accounting for multiple comparisons through the existing methods yields overly conservative results when there are multiple outcome variables of in...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Vehicle System Dynamics
سال: 2011
ISSN: 0042-3114,1744-5159
DOI: 10.1080/00423114.2010.545131